Physics data booklet

First assessment 2016

International Baccalaureate

Diploma Programme
 Physics data booklet

Published February 2014
Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the

International Baccalaureate Organization (UK) Ltd
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales CF23 8GL
United Kingdom
Website: www.ibo.org
© International Baccalaureate Organization 2014
The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes.

The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of the IB, or as expressly permitted by law or by the IB's own rules and policy. See http://www.ibo.org/copyright.

IB merchandise and publications can be purchased through the IB store at http://store.ibo.org.

> Email: sales@ibo.org

Contents

Fundamental constants 1
Metric (SI) multipliers 2
Unit conversions 3
Electrical circuit symbols 4
Equations-Core 5
Equations-AHL 8
Equations-Options 10

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	$N_{\text {A }}$	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	$k_{\text {B }}$	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Coulomb constant	k	$8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}$
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	$m_{\text {e }}$	$9.110 \times 10^{-31} \mathrm{~kg}=0.000549 \mathrm{u}=0.511 \mathrm{MeVc}^{-2}$
Proton rest mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}=1.007276 \mathrm{u}=938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron rest mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}=1.008665 \mathrm{u}=940 \mathrm{MeV} \mathrm{c}^{-2}$
Unified atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} \mathrm{c}^{-2}$
Solar constant	S	$1.36 \times 10^{3} \mathrm{~W} \mathrm{~m}^{-2}$
Fermi radius	R_{0}	$1.20 \times 10^{-15} \mathrm{~m}$

Metric (SI) multipliers

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
centi	c	10^{-1}
milli	m	10^{-2}
mano	m	10^{-3}
femto	p	10^{-6}

Unit conversions

1 radian $(\mathrm{rad}) \equiv \frac{180^{\circ}}{\pi}$
Temperature $(\mathrm{K})=$ temperature $\left({ }^{\circ} \mathrm{C}\right)+273$
1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $(\mathrm{pc})=3.26 \mathrm{ly}$
1 astronomical unit $(\mathrm{AU})=1.50 \times 10^{11} \mathrm{~m}$
1 kilowatt-hour $(\mathrm{kWh})=3.60 \times 10^{6} \mathrm{~J}$
$h c=1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m}=1.24 \times 10^{-6} \mathrm{eV} \mathrm{m}$
cell
ac supply

\qquad -
switch
ammeter

thermistor
heating element

diode

battery

voltmeter
resistor .
light-dependent resistor (LDR)

capacitor

Equations-Core

Note: All equations relate to the magnitude of the quantities only. Vector notation has not been used.

Sub-topic 1.2 - Uncertaint	Sub-topic 1.3 - Vectors and scalar
$\begin{array}{ll}\text { If: } y=a \pm b & \frac{\text { adding/subtracting }}{\text {-add absolate uncentuinty }} \\ \text { then: } \Delta y=\Delta a+\Delta b & \frac{\text { maltiplicaticn/Dirision }}{\text { add fractional uncertainty }} \\ \text { If: } y=\frac{a b}{c} & \end{array}$ then: $\frac{\Delta y}{y}=\frac{\Delta a}{a}+\frac{\Delta b}{b}+\frac{\Delta c}{c} \quad \underbrace{\text { Power }}_{\text {fractional uncertuinty }- \text { exponent }}$ If: $y=a^{n}$ then: $\frac{\Delta y}{y}=\left\|n \frac{\Delta a}{a}\right\|$ $y=$ uncentainty $\Delta=$ absolute uncertainty $=\frac{\text { uncentaint }}{\text { valve }}$ $a, b, c=$ given $\#$ n = exponent	$A_{H}=X$ component (horizontal) $A_{V}=Y$ component (vertical) $A=$ vector quantity Pythagorean therem SUH CAH TOA A_{H} $A=\sqrt{\left(A_{H}\right)^{2}+\left(A_{v}\right)^{2}}$ $A_{\mathrm{H}}=A \cos \theta-\cos \theta$ relates to x-axis $A_{\mathrm{V}}=A \sin \theta-\sin \theta$ relates to $\mathrm{y} \cdot \mathrm{a} \times \mathrm{ls}$

Sub-topic 2.1 - Motion	Sub-topic 2.2 - Forces
$\begin{aligned} & v=u+a t \\ & s=u t+\frac{1}{2} a t^{2} \\ & v^{2}=u^{2}+2 a s \\ & s=\frac{(v+u) t}{2} \end{aligned}$	
Sub-topic 2.3 - Work, energy and power	Sub-topic 2.4 - Momentum and impulse
$\begin{array}{lr} m=\text { mass }(\mathrm{kg}) & g=\text { gravitational } \\ v=\text { velocity }(\mathrm{m} / \mathrm{s}) & \text { acceleration }\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\ k=\text { spring constant } & \text { Spring Constant }=F-k x \leftarrow \text { extensic } \\ x=\text { extension }(\mathrm{m}) & \text { Force sping } \\ & \\ & \text { Applied Constant } \end{array}$	

Sub-topic 3.1-Thermal concepts	Sub-topic 3.2-Modelling a gas
$\begin{array}{rl} Q=m c \Delta T & Q \\ Q=m L & \text { Heat Energy }(J) \\ & m=\text { mass }(\mathrm{kg}) \\ & c=\text { specific neat Capacity }(\mathrm{J} / \mathrm{kg}) \\ \Delta J & =\text { change in temp }\left({ }^{\circ} \mathrm{C}\right) \\ & l=\text { specific latent heat } \end{array}$	$p=\frac{F}{A} \quad$ P-Pressure $\quad F=$ Force $\quad A=$ Area $n=\#$ of moles $N=\#$ of atoms $n=\frac{N}{N_{\mathrm{A}}} \quad N A=$ Avogadros constant $\quad V=$ Volume $p V=n R T \quad R=$ Gas Constant $\quad T$ = Temperature $E K$: Kinetic Energy $\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T \quad \mathrm{kB}=$ Boltzmann's Constant

	Sub-topic 4.1 - Oscillations	Sub-topic 4.4 - Wave behaviour
	$T=\frac{1}{f} \quad T=$ Period $\quad f=$ Frequency $\quad \begin{aligned} & T=\text { time taken to } \\ & \text { finish leycle }\end{aligned}$	$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \quad \begin{aligned} & n_{1}=\text { index of refiaction Cincidoter medium) } \\ & n_{2}=\text { index of refraction (refractive medium) }\end{aligned}$ $s=\frac{\lambda D^{\lambda}{ }_{n}^{n \cdot \text { warcength }(m)}}{n \cdot \text { seren a slit }(m)} O_{1}=4$ of incidence $V=$ velocity (m / s) $\downarrow_{\text {disthnce }}^{d} d=$ spdit spacing $O_{2}: \chi$ of refraction ${ }^{2}$ distonce betwen pright spot. Constructive interference: path difference $=n \lambda$ trough to trough (maxima) Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$ minima - donble slit diffractions
	Sub-topic 4.2 - Travelling waves	
λ. wavelongth distance of wave		
	Sub-topic 4.3-Wave characteristics	
	$I \propto A^{2} \quad I=$ Intansity $\left(\mathrm{W} / \mathrm{m}^{2}\right) \quad A=$ amplitude (m) proporticanal $I \propto x^{-2} \gamma=$ distance from source $I=$ original intonsity $I=I_{0} \cos ^{2} \theta \quad \theta=\Varangle$ below polarization below tirection and transmission axis of polarizer	

Malus' Law

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
	Kirchhoff's circuit laws: conservation of energy $=$ Yvaltang $=$ sum of $\Sigma V=0$ (loop) all voltage dror $\Sigma I=0$ (junction) cunservation of inarge $-I_{\text {exit }}+I_{\text {enter }}=0$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$ \pm zurrent (A) $\varepsilon=$ electromotive force (emt) voltage $R=$ resistance $r=$ internal lesidance	 Forkeonwire and current in magreticfield

Sub-topic 6.1 - Circular motion	Sub-topic 6.2 - Newton's law of gravitation
	$F=G \frac{M m}{r^{2}} \quad \bar{r}$ =Fore $m=$ masses $\quad r=$ radins $G=$ gravitational constant $\left(6.67 \cdot 10^{-11} \frac{\mathrm{Nmi}}{\mathrm{ky}^{2}}\right)$ $g=\frac{F}{m} \quad g=$ gracitational field strength $g=G \frac{M}{r^{2}}$ gravitational field strength at dictance (V)

Sub-topic 7.1 - Discrete energy and radioactivity	Sub-topic 7.2 - Nuclear reactions
$E=h f$	$\Delta E=\Delta m c^{2}$
$\lambda=\frac{h c}{E}$	

Sub-topic 7.3 - The structure of matter

Charge	Quarks			Baryon number
$\frac{2}{3} e$	u	c	t	$\frac{1}{3}$
$-\frac{1}{3} e$	d	s	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1

Charge	Leptons		
-1	e	μ	τ
0	ve_{e}	v_{μ}	v_{τ}

All leptons have a lepton number of 1 and antileptons have a lepton number of -1

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$	γ	Gluons

Sub-topic 8.1 - Energy sources	Sub-topic $8.2-$ Thermal energy transfer
Power $=\frac{\text { energy }}{\text { time }}$	$P=e \sigma A T^{4}$
Power $=\frac{1}{2} A \rho v^{3}$	$\lambda_{\text {max }}$ (metres) $=\frac{2.90 \times 10^{-3}}{T(\text { kelvin })}$
	$I=\frac{\text { power }}{A}$
	albedo $=\frac{\text { total scattered power }}{\text { total incident power }}$

Sub-topic 9.1 - Simple harmonic motion	Sub-topic 9.2 - Single-slit diffraction
	$\theta=\frac{\lambda}{b} \quad \boldsymbol{\theta}=$ angle $\quad \lambda=$ warelength $\quad \boldsymbol{b}=$ slit width Sub-topic 9.3 - Interference $n \lambda=d \sin \theta$ Constructive interference: $2 d n=\left(m+\frac{1}{2}\right) \lambda$ Destructive interference: $\quad 2 d n=m \lambda$ $n=\#$ (diffraction grating) $\lambda=$ wavelength $d=$ split spacing $\theta=\not \subset$ $d=$ thickness of medium
Sub-topic 9.4-Resolution	Sub-topic 9.5 - Doppler effect
$\begin{array}{cc} \theta=1.22 \frac{\lambda}{b} \quad \begin{array}{c} \theta=\text { angle } \\ \lambda=\text { wavelength } \end{array} & \begin{array}{c} m=\text { diffraction } \\ \text { order } \end{array} \\ R=\frac{\lambda}{\Delta \lambda}=m N \quad b=\text { slit width/diametor } N=H \text { of slits } \\ R=\text { Resolvance } & \text { illuminated } \\ \Delta \lambda=\text { cmallest } \lambda & \end{array}$	Moving source: $f^{\prime}=f\left(\frac{v}{v \pm u_{\mathrm{s}}}\right)$ Moving observer: $f^{\prime}=f\left(\frac{v \pm u_{0}}{v}\right)$ $\frac{\Delta f}{f}=\frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$

Sub-topic 10.1- Describing fields	Sub-topic 10.2 - Fields at work		
$W=q \Delta V_{\underline{e}}$ electrostatic Jwork done by mass/charge $W=m \Delta V_{\underline{g}}$ gravitational betwech 2 puints $\omega=$ Work (5) $q=$ charge (c) $V_{c}=$ electric potential $m=$ mass (kg)	Potential $\quad V=-\frac{G M}{r}$	$V_{e}=\frac{k q}{r}$	
		ΔV_{e}	$r=$ aistance (m)
	Δr	Δr	$\begin{aligned} & \text { Vese teleminicl } \\ & \text { Proterial } \end{aligned}$
$V_{g}=$ gravitational potential	$E_{\mathrm{P}}=m V_{g}=-\frac{G M m}{r}$	$E_{\mathrm{P}}=q V_{\mathrm{e}}=\frac{k q_{1} q_{2}}{r}$	
	Force $\quad{ }^{\text {c }}$ ($=G \frac{m_{1} m_{2}}{r^{2}}$	$F_{\mathrm{E}}=k \frac{q_{1} q_{2}}{r^{2}}$	Field stengath $V_{c}=$ electic Potemial
	$\begin{aligned} & v_{\text {esc }}=\sqrt{\frac{2 G M}{r}} \text { Es ape velatity }^{v_{\text {orbit }}=\sqrt{\frac{G M}{r}}^{\text {veluxity of ork }} \begin{array}{l} \text { body } \end{array}} \end{aligned}$		

Equations-Options

Sub-topic A. 1 - The beginnings of relativity	Sub-topic A.2 - Lorentz transformations
$x^{\prime}=x-v t$	$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$u^{\prime}=u-v$	$x^{\prime}=\gamma(x-v t) ; \Delta x^{\prime}=\gamma(\Delta x-v \Delta t)$
Sub-topic A.3 - Spacetime diagrams	$t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) ; \Delta t^{\prime}=\gamma\left(\Delta t-\frac{v \Delta x}{c^{2}}\right)$
$\theta=\tan ^{-1}\left(\frac{v}{c}\right)$	$u^{\prime}=\frac{u-v}{1-\frac{v v}{c^{2}}}$
	$\Delta t=\gamma \Delta t_{0}$
	$L=\frac{L_{0}}{\gamma}$
	$\left(c t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}=(c t)^{2}-(x)^{2}$
Sub-topic A.4 - Relativistic mechanics (HL only)	Sub-topic A.5-General relativity (HL only)
$E=\gamma m_{0} c^{2}$	$\frac{\Delta f}{f}=\frac{g \Delta h}{c^{2}}$
$E_{0}=m_{0} c^{2}$	$R_{\mathrm{S}}=\frac{2 G M}{c^{2}}$
$E_{\mathrm{K}}=(\gamma-1) m_{0} c^{2}$	$\Delta t=\frac{\Delta t_{0}}{\sqrt{1-\frac{R_{\mathrm{S}}}{r}}}$
$p=\gamma m_{0} v$	
$E^{2}=p^{2} c^{2}+m_{0}{ }^{2} c^{4}$	$q V=\Delta E_{\mathrm{K}}$

Sub-topic B. 1 - Rigid bodies and rotational dynamics	Sub-topic B. 2 - Thermodynamics
	$\begin{aligned} & Q=\Delta U+W \quad \quad Q=\text { internal Energy } \\ & U=\frac{3}{2} n R T \quad \Delta V=\Delta \text { Heat Erasy } \\ & \Delta S=\frac{\Delta Q}{T} \quad \begin{array}{l} \text { W Work } \end{array} \\ & p V^{\frac{5}{3}}=\text { Pressure } \\ & W=p \Delta V \\ & V=\text { Volume } \\ & \eta=\frac{\text { useful work done }}{\text { energy input }} \\ & \eta_{\text {Carnot }}=1-\frac{T_{\text {cold }}}{T_{\text {hot }}} \end{aligned}$
Sub-topic B. 3 - Fluids and fluid dynamics (HL only)	Sub-topic B. 4 - Forced vibrations and resonance (HL only)
$\begin{aligned} & B=\rho_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}} g \\ & P=P_{0}+\rho_{\mathrm{f}} g d \\ & A v=\text { constant } \\ & \frac{1}{2} \rho v^{2}+\rho g z+p=\text { constant } \\ & F_{\mathrm{D}}=6 \pi \eta r v \\ & R=\frac{v r \rho}{\eta} \end{aligned}$	$\begin{aligned} & Q=2 \pi \frac{\text { energy stored }}{\text { energy dissipated per cycle }} \\ & Q=2 \pi \times \text { resonant frequency } \times \frac{\text { energy stored }}{\text { power loss }} \end{aligned}$

Sub-topic C. 1 - Introduction to imaging	Sub-topic C. 2 - Imaging instrumentation
$\begin{aligned} & \frac{1}{f}=\frac{1}{v}+\frac{1}{u} \\ & P=\frac{1}{f} \\ & m=\frac{h_{\mathrm{i}}}{h_{\mathrm{o}}}=-\frac{v}{u} \\ & M=\frac{\theta_{\mathrm{i}}}{\theta_{\mathrm{o}}} \\ & M_{\text {near point }}=\frac{D}{f}+1 ; M_{\text {infinity }}=\frac{D}{f} \end{aligned}$	$M=\frac{f_{\mathrm{o}}}{f_{\mathrm{e}}}$
	Sub-topic C. 3 - Fibre optics
	$\begin{aligned} & n=\frac{1}{\sin c} \\ & \text { attenuation }=10 \log \frac{I}{I_{0}} \end{aligned}$
	Sub-topic C. 4 - Medical imaging (HL only)
	$\begin{aligned} & L_{\mathrm{I}}=10 \log \frac{I_{1}}{I_{0}} \\ & I=I_{0} e^{-\mu x} \\ & \mu x_{\frac{1}{2}}=\ln 2 \\ & Z=\rho c \end{aligned}$

Sub-topic D. 1 - Stellar quantities	Sub-topic D. 2 - Stellar characteristics and stellar evolution
$\begin{aligned} & d \text { (parsec) }=\frac{1}{p(\text { arc-second })} \\ & L=\sigma A T^{4} \\ & b=\frac{L}{4 \pi d^{2}} \end{aligned}$	$\begin{aligned} & \lambda_{\max } T=2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K} \\ & L \propto M^{3.5} \end{aligned}$
Sub-topic D. 3 - Cosmology	Sub-topic D. 5 - Further cosmology (HL only)
$\begin{aligned} & z=\frac{\Delta \lambda}{\lambda_{0}} \approx \frac{v}{c} \\ & z=\frac{R}{R_{0}}-1 \\ & v=H_{0} d \\ & T=\frac{1}{H_{0}} \end{aligned}$	$\begin{aligned} v & =\sqrt{\frac{4 \pi G \rho}{3}} r \\ \rho_{\mathrm{c}} & =\frac{3 H^{2}}{8 \pi G} \end{aligned}$

