

Physics data booklet

First assessment 2016

Diploma Programme Physics data booklet

Published February 2014

Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the

International Baccalaureate Organization (UK) Ltd
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales CF23 8GL
United Kingdom
Website: www.ibo.org

© International Baccalaureate Organization 2014

The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes.

The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of the IB, or as expressly permitted by law or by the IB's own rules and policy. See http://www.ibo.org/copyright.

IB merchandise and publications can be purchased through the IB store at http://store.ibo.org.

Email: sales@ibo.org

Contents

Fundamental constants	1
Metric (SI) multipliers	2
Unit conversions	3
Electrical circuit symbols	4
Equations—Core	5
Equations—AHL	8
Equations—Options	10

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Avogadro's constant	$N_{\rm A}$	$6.02 \times 10^{23} \mathrm{mol^{-1}}$
Gas constant	R	8.31 J K ⁻¹ mol ⁻¹
Boltzmann's constant	$k_{ m B}$	$1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$
Coulomb constant	k	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2}$
Permittivity of free space	$arepsilon_0$	$8.85 \times 10^{-12} \mathrm{C^2N^{-1}m^{-2}}$
Permeability of free space	μ_0	$4\pi\times10^{-7}TmA^{-1}$
Speed of light in vacuum	С	$3.00 \times 10^8 \mathrm{ms^{-1}}$
Planck's constant	h	$6.63 \times 10^{-34} \text{J s}$
Elementary charge	e	1.60×10^{-19} C
Electron rest mass	$m_{ m e}$	$9.110 \times 10^{-31} \text{kg} = 0.000549 \text{ u} = 0.511 \text{ MeV } \text{c}^{-2}$
Proton rest mass	$m_{ m p}$	$1.673 \times 10^{-27} \mathrm{kg} = 1.007276 \mathrm{u} = 938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron rest mass	$m_{ m n}$	$1.675 \times 10^{-27} \mathrm{kg} = 1.008665 \mathrm{u} = 940 \mathrm{MeV} \mathrm{c}^{-2}$
Unified atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{kg} = 931.5 \mathrm{MeV} \mathrm{c}^{-2}$
Solar constant	S	$1.36 \times 10^{3} \mathrm{W}\mathrm{m}^{-2}$
Fermi radius	R_0	$1.20 \times 10^{-15} \mathrm{m}$

Physics data booklet

Metric (SI) multipliers

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	Т	10^{12}
giga	G	10^{9}
mega	М	10^6
kilo	k	10^3
hecto	h	10^2
deca	da	10^1
deci	d	10-1
centi	с	10-2
milli	m	10-3
micro	μ	10-6
nano	n	10-9
pico	p	10-12
femto	f	10 ⁻¹⁵

Unit conversions

1 radian (rad)
$$\equiv \frac{180^{\circ}}{\pi}$$

Temperature (K) = temperature ($^{\circ}$ C) + 273

1 light year (ly) = 9.46×10^{15} m

1 parsec (pc) = 3.26 ly

1 astronomical unit (AU) = 1.50×10^{11} m

1 kilowatt-hour (kWh) = 3.60×10^6 J

 $hc = 1.99 \times 10^{-25} \text{ J m} = 1.24 \times 10^{-6} \text{ eV m}$

Electrical circuit symbols

Equations—Core

Note: All equations relate to the magnitude of the quantities only. Vector notation has not been used.

m=mass(kg)

V= velocity(mg)

k= Spring constant

X= extension (m)

y= g v v' tational

acceleration (9.71m/s²)

Spring Constant = F - kx & extension

Force spring

Applied Constant

Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$Q = mc\Delta T$ Q = Heat Energy (T) Q = mL $M = mass (49)$	$p = \frac{F}{A} \qquad \text{p-Piessure} \qquad \text{F-force} \qquad \text{A=Area}$ $n = \frac{N}{N_A} \text{NA = Avagadro's (onstant)} \qquad \text{V-Volume}$ $FV: \text{Violation}$
T- change in term (1)	$n=rac{N}{N_{ m A}}$ N.M.= Avogadros (onstarii V*Volume) $pV=nRT$ R=Gas (onstarii T=Temporature EX:Kinetic Energy) $ar{E}_{ m K}=rac{3}{2}k_{ m B}T=rac{3}{2}rac{R}{N_{ m A}}T$ kB=Boltzmann's Constant

	Sub-topic 4.1 – Oscillations	Sub-topic 4.4 – Wave behaviour
	$T=rac{1}{f}$ T= Period f = Frequency T= time taken to Finish cycle	$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1} \text{for the proof of the fraction (retractive medium)} $ $\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1} for the proof of the p$
a-wavelangth	Sub-topic 4.2 – Travelling waves	$S = \frac{\lambda D}{d} \frac{D_1}{D_2} \cdot \text{screen a slit (m) } 0_1 = 4 \text{ of incidence} \text{V= velocity (m/s)}$ $S = \frac{\lambda D}{d} \frac{D_2}{D_2} \cdot \text{screen a slit (m) } 0_2 = 4 \text{ of refraction}$ $\text{Add distance between bight spate}$
distance of	$c = f\lambda$ C= speed of light (3.10^{9}) F= Firequency (Hz)	d distance between bright space Constructive interference: path difference = $n\lambda$
Maye	Sub-topic 4.3 – Wave characteristics	trough to trough (maxima) Destructive interference: path difference = $(n + \frac{1}{2})\lambda$
	$I \propto A^2$ I: Intensity ("M") A-amplitude (m)	minima - double slit difference = $(n + \frac{1}{2})^n$
	$I \propto x^{-2}$ (* also mile trains so that $I = I_0 \cos^2 \theta$ of a below polarization below direction and transmission axis of polarizer	

Malus' Law

Trains Equ	
Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t} \text{I = current(A)} \text{t = time (s)}$ $F = k \frac{q_1 q_2}{r^2} \text{F = Electrical Force} \text{q = charge(c)} \text{r = distance between } $ $k = \frac{1}{4\pi\epsilon_0} \text{k = coulomb's constant} \text{for empty and } for emp$	Kirchhoff's circuit laws: Conservation of energy = Zvoltage = sum of $\Sigma V = 0 \text{ (loop) all voltage drop}$ $\Sigma I = 0 \text{ (junction) (unservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} + I_{\text{enter}} = 0$ $R = \frac{V}{I} \text{ (inservation of charge - } I_{\text{exit}} +$
$\varepsilon = I(R+r)$	$F=qvB\sin\theta$ - Magnetic Force of moving charge through F_2 Force V_1 velocity F_3 Force on what F_4 F_5 Force F_6 F_6 F_7 retailen V_1 V_2 between V_2 V_3 consists V_4 V_5 respectively.

18=magnitude of magnetic field I=current(A) 9=4 betwoeld between the second of the se 9=4 between I and B

Sub-topic 6.1 – Circular motion	Sub-topic 6.2 – Newton's law of gravitation
$v = \omega r \text{angular velocity} velocity (^{n}V_{e})$ $a = \frac{v^{2}}{r} = \frac{4\pi^{2}r}{T^{2}} \text{centripetal} \omega = \text{angular velocity} (^{rad}./c_{ec})$ $a = \frac{v^{2}}{r} = \frac{4\pi^{2}r}{T^{2}} \text{centripetal} \omega = \text{angular velocity} (^{rad}./c_{ec})$ $a = \frac{v^{2}}{r} = \frac{4\pi^{2}r}{T^{2}} \text{centripetal} a_{e} \text{alies of (sec.)}$ $F = \frac{mv^{2}}{r} = \frac{m\omega^{2}r}{r} \text{force (N or kg/h/r)}$ $F = \frac{mv^{2}}{r} = \frac{m\omega^{2}r}{r} \text{force (N or kg/h/r)}$ $F = \frac{mv^{2}}{r} = \frac{m\omega^{2}r}{r} \text{force (N or kg/h/r)}$	$F = G \frac{Mm}{r^2} \text{F-Force M=masses} \text{V-Fadin} \ $ $g = \frac{F}{m} \text{g-gravitational field strength} \ $ $g = G \frac{M}{r^2} \text{gravitational field strength} \ $ $g = G \frac{M}{r^2} \text{gravitational field strength} \text{at distance (v)} \ $

Sub-topic 7.1 – Discrete energy and radioactivity	Sub-topic 7.2 – Nuclear reactions
E = hf	$\Delta E = \Delta m c^2$
$\lambda = \frac{hc}{E}$	

Sub-topic 7.3 – The structure of matter

Charge	Quarks			Baryon number
$\frac{2}{3}e$	u	С	t	$\frac{1}{3}$
$-\frac{1}{3}e$	d	S	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1

Charge	┙	epton	S
-1	е	μ	τ
0	υe	υ_{μ}	υ_{τ}

All leptons have a lepton number of 1 and antileptons have a lepton number of –1

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	W+, W-, Z ⁰	γ	Gluons

Sub-topic 8.1 – Energy sources	Sub-topic 8.2 – Thermal energy transfer
$Power = \frac{energy}{time}$ $Power = \frac{1}{2}A\rho v^{3}$	$P = e\sigma A T^4$ $\lambda_{\text{max}}(\text{metres}) = \frac{2.90 \times 10^{-3}}{T(\text{kelvin})}$
	$I = \frac{\text{power}}{A}$ $\text{albedo} = \frac{\text{total scattered power}}{\text{total incident power}}$

Equations—AHL

Sub-topic 9.1 – Simple harmonic motion	Sub-topic 9.2 – Single-slit diffraction
$\omega = \frac{2\pi}{T}$ $\alpha = -\omega^2 x$ $x = x_0 \sin \omega t ; x = x_0 \cos \omega t$ $v = \omega x_0 \cos \omega t ; v = -\omega x_0 \sin \omega t$ $v = \pm \omega \sqrt{(x_0^2 - x^2)}$ $E_K = \frac{1}{2} m \omega^2 (x_0^2 - x^2)$ $E_T = \frac{1}{2} m \omega^2 x_0^2$ $Pendulum: T = 2\pi \sqrt{\frac{l}{g}}$ $\omega = \log \log$	$\theta = \frac{\lambda}{b} \theta = \text{angle} \lambda = \text{wavelength} b = \text{slit width}$ Sub-topic 9.3 – Interference $n\lambda = d \sin \theta$ Constructive interference: $2dn = (m + \frac{1}{2})\lambda$ Destructive interference: $2dn = m\lambda$ $h = H \left(A : \text{ffraction grating} \right) n = \text{refractive index}$ $\lambda = \text{wavelength} \text{index}$ $d = \text{split spacing}$ $\theta = \chi$ $d = \text{thickness of redium}$
Sub-topic 9.4 - Resolution $\theta = 1.22 \frac{\lambda}{b} \qquad \begin{array}{ll} 0 = \text{angle} & \text{m=diffraction} \\ \lambda = \text{wavelength} & \text{order} \end{array}$ $R = \frac{\lambda}{\Delta \lambda} = mN \qquad \begin{array}{ll} b = \text{slit width/diameter N=$ μ of clits} \\ K = \text{Resolvance} & \text{illuminated} \\ \Delta \lambda = \text{cmallest } \lambda \end{array}$	Sub-topic 9.5 – Doppler effect Moving source: $f' = f\left(\frac{v}{v \pm u_s}\right)$ Moving observer: $f' = f\left(\frac{v \pm u_0}{v}\right)$ $\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$

Sub-topic 10.1 - Describing fields	Sub-topic 10.2 – Fields at work
Sub-topic 10.1 - Describing fields $W = q\Delta V_{\underline{e}} \text{ electrostatic} \text{ work done by mass/charge}$ $W = m\Delta V_{\underline{g}} \text{ gravitational between } 2 \text{ points}$ $W = \text{Work}(\tau)$ $q = \text{charge}(\tau)$ $V_{\underline{e}} = \text{electric potential}$ $m = \text{mass}(r_{\underline{g}})$ $V_{\underline{g}} = \text{gravitational potential}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$v_{ m orbit} = \sqrt{rac{GM}{r}}$ Velocity of orbit around a body

Vg=gravitanol
G=gravitational
concrant
M=mass(m)
V=distance(m)
Ve=Electrical
Potential
k=content
q=content
q=content
y=gravitational
Ve=electric
Potential
Ve=electric
Potential
En=PE
F==time.
Force
F=Electric
F=Electric

Out to it 44.4 Floring worth in duration	0
Sub-topic 11.1 – Electromagnetic induction	Sub-topic 11.3 – Capacitance
$\Phi = BA\cos\theta \qquad \Rightarrow \text{enagnetic flux} \qquad \text{B-mag. magnetic field}$ $\varepsilon = -N\frac{\Delta\phi}{\Delta t} \qquad \text{E-enf} \qquad \text{N= # of loop } 0 \text{A + B}$ $\varepsilon = -N\frac{\Delta\phi}{\Delta t} \qquad \text{E-enf} \qquad \text{N= # of loops} \qquad \text{Faladay's Law}$ $\varepsilon = Bvl \qquad \text{V= speed of wise } (\text{m/s}) \qquad -\text{ interested emf} \qquad \text{in straight with}$	$C = \frac{q}{V} C = \text{capacities (Fainds)} V = \text{voltage (V)}$ $C_{\text{parallel}} = C_1 + C_2 + \cdots$ $\frac{1}{C_{\text{series}}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots \text{Vesistance}$ $C = \varepsilon \frac{A}{d} \text{parallel-plate capacitor } \varepsilon: \text{ permittinity of dielectric}$ $C = \varepsilon \frac{A}{d} \text{A = area of plates} A = \text{distance between plates}$
Chechive current $I_{\rm rms} = \frac{I_0}{\sqrt{2}} \qquad I_0 = \text{Peace convert}$ Chechive $V_{\rm rms} = \frac{V_0}{\sqrt{2}} \qquad \text{Convert} (\text{RMC}) \text{ of alternating current}$ $V_{\rm rms} = \frac{V_0}{\sqrt{2}} \qquad \text{Convert} \text{Voltage}$ $V_{\rm rms} = \frac{V_0}{I_0} \qquad \text{Convert} \text{Voltage}$ $V_{\rm rms} = \frac{V_0}{I_0} = \frac{V_{\rm rms}}{I_{\rm rms}}$ $V_{\rm rms} = I_0 V_0$ $V_{\rm rms} = I_0$	$E=\frac{1}{2}CV^2$ E-energy stated in capacitor $ au=RC$ T= time constant R-redistance $q=q_0e^{-\frac{t}{\tau}}$ $q_0=$ initial charge +-time(c) $I=I_0e^{-\frac{t}{\tau}}$ $q_0=$ initial max current $q_0=$

N: H or turns

N: B of Tulks	
Sub-topic 12.1 – The interaction of matter with radiation	Sub-topic 12.2 – Nuclear physics
E = hf	$R = R_0 A^{1/3}$
$E_{\max} = hf - \Phi$	$N = N_0 e^{-\lambda t}$
$E = -\frac{13.6}{n^2}eV$	$R = R_0 A^{1/3}$ $N = N_0 e^{-\lambda t}$ $A = \lambda N_0 e^{-\lambda t}$
n^2	1
$mvr = \frac{nh}{2\pi}$	$\sin\theta \approx \frac{\lambda}{D}$
$\Delta\pi$	
$P(r) = \psi ^2 \Delta V$	
$\Delta x \Delta p \ge \frac{h}{4\pi}$	
$\Delta E \Delta t \ge \frac{h}{4\pi}$	

Sub-topic A.1 – The beginnings of relativity	Sub-topic A.2 – Lorentz transformations
x' = x - vt $u' = u - v$	$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$
Sub-topic A.3 – Spacetime diagrams	$x' = \gamma(x - vt)$; $\Delta x' = \gamma(\Delta x - v\Delta t)$
$\theta = \tan^{-1}\left(\frac{\nu}{c}\right)$	$t' = \gamma(t - \frac{vx}{c^2}); \Delta t' = \gamma(\Delta t - \frac{v\Delta x}{c^2})$
	$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$
	$\Delta t = \gamma \Delta t_0$
	$L = \frac{L_0}{\gamma}$
	$(ct')^2 - (x')^2 = (ct)^2 - (x)^2$
Sub-topic A.4 – Relativistic mechanics (HL only)	Sub-topic A.5 – General relativity (HL only)
$E = \gamma m_0 c^2$	$\frac{\Delta f}{\Delta t} = \frac{g\Delta h}{\Delta t}$
$E_0 = m_0 c^2$	$\frac{1}{f} = \frac{1}{c^2}$
$E_{\rm K} = (\gamma - 1)m_0c^2$	$R_{\rm s} = \frac{2GM}{c^2}$
$p = \gamma m_0 v$	$\Delta t = \Delta t_0$
$E^2 = p^2 c^2 + m_0^2 c^4$	$\Delta t = \frac{\Delta t_0}{\sqrt{1 - \frac{R_s}{r}}}$
$qV = \Delta E_{\rm K}$	N I

Sub-topic B.1 – dynamics		Sub-topic B.2 – Thermodynamics
$\Gamma = Fr \sin \theta$ $I = \sum mr^2$ $\Gamma = I\alpha$ $\omega = 2\pi f$ $\omega_f = \omega_i + \alpha t$ $\omega_f^2 = \omega_i^2 + 2\alpha \theta$ $\theta = \omega_i t + \frac{1}{2}\alpha t^2$ $L = I\omega$ $E_{K_{rot}} = \frac{1}{2}I\omega^2$	W= angular speed(%) \(\Pi = \text{Torque} \) \(\Pi = \text{Torque} \) \(\Pi = \text{Adius} \) \(\Pi = \text{Tinteria} \) \(\text{time} \) \(\Pi = \text{angular momentum} \) \(\Pi = \text{votational Incrtia} \) \(\Fk = \text{Kiretic Evergy} \)	$Q = \Delta U + W \qquad \text{Q= internal Energy}$ $U = \frac{3}{2} nRT \qquad \text{aV = a Heat Energy}$ $W: Work$ $\Delta S = \frac{\Delta Q}{T} \qquad \text{p= Pressure}$ $V= \text{Volume}$ $pV^{\frac{5}{3}} = \text{constant (for monatomic gases)}$ $W = p\Delta V$ $\eta = \frac{\text{useful work done}}{\text{energy input}}$ $\eta_{\text{Carnot}} = 1 - \frac{T_{\text{cold}}}{T_{\text{hot}}}$
Sub-topic B.3 – Flui	ds and fluid dynamics (HL only)	Sub-topic B.4 – Forced vibrations and resonance (HL only)
$B = \rho_f V_f g$ $P = P_0 + \rho_f g d$ $Av = \text{constant}$ $\frac{1}{2} \rho v^2 + \rho g z + p = \text{constant}$	nstant	$Q = 2\pi \frac{\text{energy stored}}{\text{energy dissipated per cycle}}$ $Q = 2\pi \times \text{resonant frequency} \times \frac{\text{energy stored}}{\text{power loss}}$
$F_{\rm D} = 6\pi\eta r v$ $R = \frac{v r \rho}{\eta}$		

Sub-topic C.1 – Introduction to imaging	Sub-topic C.2 – Imaging instrumentation
$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	$M = \frac{f_{\rm o}}{f_{\rm e}}$
$P = \frac{1}{f}$	Sub-topic C.3 – Fibre optics
$m = \frac{h_{i}}{h_{o}} = -\frac{v}{u}$ $M = \frac{\theta_{i}}{\theta_{o}}$	$n = \frac{1}{\sin c}$ attenuation = $10 \log \frac{I}{I_0}$
	Sub-topic C.4 – Medical imaging (HL only)
$M_{\text{near point}} = \frac{D}{f} + 1$; $M_{\text{infinity}} = \frac{D}{f}$	$L_{\rm I} = 10 \log \frac{I_1}{I_0}$
	$I = I_0 e^{-\mu x}$ $\mu x_{\frac{1}{2}} = \ln 2$
	$\mu x_{\frac{1}{2}} = \ln 2$
	$Z = \rho c$

Sub-topic D.1 – Stellar quantities	Sub-topic D.2 – Stellar characteristics and stellar evolution
$d ext{ (parsec)} = \frac{1}{p ext{ (arc-second)}}$ $L = \sigma A T^4$	$\lambda_{\text{max}}T = 2.9 \times 10^{-3} \text{ m K}$ $L \propto M^{3.5}$
$b = \frac{L}{4\pi d^2}$ Sub-topic D.3 – Cosmology	Sub-topic D.5 – Further cosmology (HL only)
$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$ $z = \frac{R}{R_0} - 1$	$v = \sqrt{\frac{4\pi G\rho}{3}}r$ $\rho_{c} = \frac{3H^{2}}{8\pi G}$
$v = H_0 d$ $T \approx \frac{1}{H_0}$	$\rho_c = 8\pi G$